人工智能研发运营体系(MLOps)实践指南(2023年)

本指南系统性梳理 MLOps 概念内涵、发展过程、落地挑战等现状,并基于 MLOps 的理论研究和实践案例分析组织如何构建 MLOps 框架体系和关键能力。

  • 版本 2023
  • 下载 17
  • 文件大小 1.76 MB
  • 文件计数 1
  • 创建日期 2023年3月20日
  • 最后更新 2023年3月16日

人工智能研发运营体系(MLOps)实践指南(2023年)

MLOps 的发展呈现出逐渐成熟的态势,近几年国内外 MLOps 落地应用正持续快速推进,特别是在 IT、银行、电信等行业取得明显效果。与此同时,MLOps 行业应用成熟度不足,使得组织在制度规范的建立、流程的打通、工具链的建设等诸多环节面临困难。因此本指南旨在成为组织落地 MLOps 并赋能业务的“口袋书”,围绕机器学习全生命周期,为模型的持续构建、持续交付、持续运营等过程提供参考,推进组织的 MLOps 落地进程,提高组织 AI 生产质效。

本指南由中国信通院云计算与大数据研究所、人工智能关键技术和应用评测工业和信息化部重点实验室联合发布。本指南站在组织如何布局和落地 MLOps 的视角,以模型的高质量、可持续交付作为核心逻辑,系统性梳理 MLOps 概念内涵、发展过程、落地挑战等现状,并基于 MLOps 的理论研究和实践案例分析组织如何构建 MLOps 框架体系和关键能力,最后总结和展望其发展趋势。

来源:中国信息通信研究院、人工智能关键技术和应用评测工业和信息化部重点实验室

发条评论

你的电邮不会被公开。有*标记为必填。