数治入门 | 数据治理架构、实施路径以及项目交付

企业只有构筑一套企业级的数据治理综合体系,明确关键数据资产的业务管理责任,依赖规范的制度流程机制,构建有效的管理平台及工具,数据的价值才能真正发挥出来。

数据治理架构、实施路径以及项目交付
出处:杭州玳数科技有限公司(简称袋鼠云)

随着世界经济由工业经济向数字经济转型,数据逐步成为关键的生产要素,企业开始将数据作为一种战略资产进行管理。数据从业务中产生,在 IT 系统中承载,要对数据进行有效治理,需要业务充分参与,IT 系统确保遵从,这是一个非常复杂的系统工程。

实践证明,企业只有构筑一套企业级的数据治理综合体系,明确关键数据资产的业务管理责任,依赖规范的制度流程机制,构建有效的管理平台及工具,数据的价值才能真正发挥出来。数据治理架构如下图所示。

图 1 袋鼠云数据治理框架图

一、数据治理架构

构筑数据治理体系的过程,即以数据应用为核心打造“良性循环的闭环数据治理管理体系”的过程。各 IT 系统获取业务活动产生的各类数据后,经过系统的数据治理、管理,不断挖掘、变现数据价值,拓展、深入数据应用场景,指导业务决策,同时在不断应用数据过程中基于发现的数据问题,通过数据治理、管理的过程不断修订,推动业务系统全面升级,真正优化业务流程管理机制及规范,最终构建数据“获取→管理→变现→发现→应对→修正”的闭环管理机制。以数据应用核心,数据治理平台工具为支撑,在数据治理组织/制度保障下,不断通过数据治理手段,推动实现数据标准化及业务标准化,实现业务、技术、管理、平台的有效联动。

在数据治理综合体系内,数据治理核心模块包括数据治理规划、数据治理职能及数据治理平台工具,数据治理规划是指数据治理体系与规划、数据治理组织与职责、数据治理制度及流程,是数据治理规范化管理的核心模块;数据治理职能包括数据标准管理、数据质量管理、数据架构及模型管理、数据开发、元数据管理、主数据管理、数据生命周期管理、数据安全管理八大职能,实际过程中,企业通常会合并管理;数据治理平台工具包括数据开发平台、数据资产管理平台、数据质量管理平台、数据服务平台,通常数据治理平台工具基于数据治理的阶段功能并不完全一致,实践中平台工具通常综合多方面功能,而不是单平台功能。

三大模块互为动力,数据治理规划指导数据治理职能的全面发挥,数据治理各项职能通过数据治理平台工具协助管理,数据治理平台工具支撑数据治理规划的落地及优化,数据治理规划各层面逐步固化在数据治理平台上,数据治理平台辅助数据治理各项职能的管理,通过数据治理各项职能不断落实和完善数据治理规划,实现组织数字化转型,固化管理机制及流程体系。

未来企业通过构筑数据治理综合体系,逐步建立数据治理机制,完成组织转型,数据治理职能将成为企业管理的重要组成部分,良性循环的管理体系将推动企业实现更广、更深层次的数据应用,数据决策将成为企业人思考的习惯,企业决策将更加科学、有效。未来企业数据治理蓝图架构如下图所示,业务系统、数据治理及数据应用互为动力,共同推动企业数字化转型的实现。

图 2 数据治理蓝图架构示例

二、数据治理实施路径

企业数据治理实施路径通常包含三个阶段。

第一阶段:起步阶段,业务运营数字化阶段。

这个阶段主要是梳理企业面临的现状,响应痛点,探索业务场景化。企业逐步开始由信息化向数字化转型,这个阶段企业会重新审视原有的数据治理策略,重构数据治理战略及实现路径,逐步开始搭建数据治理框架、数据治理体系框架,升级原有的数据处理、应用模式,搭建大数据平台,构建大数据采集、汇集、存储、计算、服务的基础能力,逐步整合各系统的数据,打破数据孤岛,沉淀数据资产,探索业务场景化。

第二阶段:深入拓展阶段,数据赋能常态化阶段。

这个阶段数据应用成为重点,企业开始深挖数据价值,提高数据应用覆盖。数据应用的范围,由核心 KPI 指标的实现,逐步覆盖全部核心业务,搭建完善的分析框架和洞察体系,不断地提升业务决策质量。大数据平台持续发挥大数据处理的能力,企业纳入更多、更广的数据内容,不断扩大数据应用的广度及深度,初步形成企业的数据资产地图,数据标准体系逐步搭建,数据应用的效率大大提升,初步完成由“经验主义”向“数据主义”的转型,数据决策成为企业决策主要决策方式。

这个阶段,企业开始全面建立数据管理权限体系,完善数据治理机制,优化数据治理流程及制度体系,由原有的“粗放式”管理升级为“精细化”管理,数据质量不断提升,企业数据管理能力升级,逐步通过数据质量平台、数据资产平台、数据治理平台工具等实现智能管理,企业数据思维认知全面提升。

第三阶段:智能应用阶段,运营决策智慧化阶段。

这个阶段企业实现洞策合一,智慧场景应用成为常态,全面完成数字化转型,探索数字业务,开启新篇章。这个阶段以智能应用为主,AI 赋能成为常态,企业不断地挖掘数据的价值、激发创新,开始为企业战略性分析提供准确的数据依赖,在这个阶段,有些企业甚至在原有商业模式上,激发新的业务模式。

数据管理层面,由数据治理体系建设逐步向数据治理体系优化进阶,完善机制、流程,进一步细化数据管理职责;数据资产层面,完成全域数据资产建设,构建强壮的数据模型体系,完成企业数据标准建设,不断完善数据资产体系;平台工具层面,大数据平台能力逐步向算法能力转移,智能推荐算法模型开发成为常态化的需求,数据治理平台逐步完善功能,协助企业智能化数据质量、数据标准、数据资产及主数据等模块,企业真正进入运营决策智慧化阶段。

图 3 数据治理实施路径三大阶段

三、数据治理项目交付

1. 项目交付组织建议

专业的交付团队,是项目成功的关键,依托于专业的数据治理服务团队和知识沉淀,开展项目实施工作。

首先客户的 CIO 或 CDO 是项目顺利进行的关键角色,可以更高效地推动实施团队与业务的融合。其次是项目的项目经理,负责项目的管理和资源调度,各阶段人员及工作安排,项目计划制定、进度控制、项目风险管理、项目质量把关等;技术负责人、系统架构师、项目管理专员是项目团队的智囊团和质量保障;根据项目需求,安排不同岗位职能人员开展实施及售后工作,包括但不限于业务架构师、业务分析师、数据架构师、数据开发工程师、测试工程师、技术支持、运维工程师、产品专家、产品经理、客户成功专员等。

图 4 数据治理项目交付人员配置

2. 项目交付步骤

项目交付主要分为 4 个步骤,以需求调研为切入点,以方案设计为规划核心,以开发实施为交付重点,以上线运维为服务保障,依次稳步开展保证项目的顺利实施。

第一步是需求调研:通过业务调研切入,以收集资料和访谈调研为抓手,了解客户的业务流程和痛点,深挖根本原因。以数据调研作为后续方案设计的开端,结合业务调研的痛点与根本原因,了解客户数据系统的现状后,以数据角度切入整体解决方案。

第二步是方案设计:以数据标准方案为基石,以场景规划方案为需求原点,以数据架构方案为纲领,进行整个数据治理方案设计;以客户实际需求为主,形成规范的组织架构、管理制度,参考国标及行标,形成数据标准方案,为后续实施打下坚实基础;通过需求调研整理客户实施的场景范围,输出原型设计及指标清单,与客户确认后输出场景规划文档,以此确定客户整体需求范围;根据整体需求范围和数据系统现状,搭建数据架构,划分业务域及数据域,规划后续开发实施的整体框架。

第三步是开发实施:确定整体方案后,进行产品部署、数据探查、数据同步工作,根据场景规划和架构设计方案,遵循数据标准方案,进行数据开发与数据治理。

第四步是上线运维:整体开发完成后进行试运行,同步开展产品测试工作,均通过后进行产品验收及正式上线,质保期间由运维部门进行巡检及售后工作。

图 5 数据治理项目交付步骤图

3. 项目交付成果

项目交付成果与交付步骤紧密相关,需求调研阶段以调研会议纪要、数据资产清单为主,方案设计阶段以产品需求文档、数据架构设计文档、数据标准方案为主,开发实施阶段以数据模型设计、需求变更清单为主,上线运维阶段以试运行报告、验收报告、售后运维方案为主,结合客户实际需求,交付相应的数据治理成果。

图 6 数据治理项目交付成果图

本文摘编自杭州玳数科技有限公司(简称袋鼠云)发布的《数据治理行业实践白皮书(2023版)》,全文下载请留意后续。

2 评论